



# AI-516/516PD65 Dedicated Artificial Intelligence Temperature Controller

## User Manual

### (V9.3)



## Table of Contents

|                                                       |    |
|-------------------------------------------------------|----|
| 1 Overview .....                                      | 2  |
| 1.1 Main Features .....                               | 2  |
| 1.2 Model Definition .....                            | 2  |
| 1.3 Technical Specifications .....                    | 3  |
| 1.4 Wiring Methods .....                              | 3  |
| 2 Display and Operation .....                         | 4  |
| 2.1 Panel Description .....                           | 4  |
| 2.2 Display State .....                               | 5  |
| 2.3 Operation Methods .....                           | 5  |
| 3 Parameter Function .....                            | 6  |
| 3.1 Custom Parameter Table .....                      | 6  |
| 3.2 Complete Parameter Table .....                    | 7  |
| 3.3 Special Functions Supplementary Notes .....       | 16 |
| 4 Program Control(only for AI-516P) .....             | 18 |
| 4.1 Functions and Concepts .....                      | 18 |
| 4.2 Program Arrangement .....                         | 19 |
| 5 Frequently Asked Questions .....                    | 21 |
| 5.1 How to Auto-Tune? .....                           | 21 |
| 5.2 How to enter the internal parameter list? .....   | 22 |
| 5.3 The instrument panel is flashing "orAL"? .....    | 22 |
| 5.4 What to Do If the Instrument Has No Output? ..... | 22 |

# 1 Overview

## 1.1 Main Features

- The input adopts a highly accurate and stable digital calibration system, supporting multiple thermocouple types with a maximum resolution of 0.01°C.
- Utilize an advanced AI-based PID control algorithm with no overshoot and auto-tuning (AT) capability.
- User-friendly operation design for easy learning and use.
- Support self-editing operation permissions and interface, allowing users to “tailor” the instrument to their needs.
- The anti-interference performance meets the requirements of electromagnetic compatibility (EMC) under harsh industrial conditions.

### ⚠ Precautions

This manual introduces the AI-516/516P Artificial Intelligence PID Temperature Controller, Version 9.3. Some of the features mentioned in this manual may not be applicable to other versions of the instrument. The model and software version number of the instrument will be shown on the display during startup. Users should be aware of the differences between different models and versions when operating the device. Please read this manual carefully to ensure the proper use of the instrument and fully utilize its functionalities.

Before use, the AI instrument must be configured correctly according to their input/output specifications and functional requirements. The instrument can only be put into operation after the parameters have been properly set.

## 1.2 Model Definition

The model is temporarily fixed as AI- 516 D65 K1 L0 S  
①    ②    ③    ④    ⑤

① indicates the basic function of the instrument

AI-516 (An economical temperature controller with 0.25-class accuracy, featuring AI-based artificial intelligent control technology, multiple alarm modes, and communication functions)

AI-516P (added 30 program segments for time control on basis of AI-516)

② indicates the dimensions. The D65 model measures 81mm\*53mm\*48mm and features a built-in silicon-controlled rectifier (SCR), with the output directly connected to the load, supporting a maximum current of 5A.

③ indicates the output type, K1 represents a zero-crossing trigger output mode.

④ indicates with alarm function, corresponding to logic AU1, NOUT and LOUT will be output only when both OP1 and AU1 are active.

⑤ indicates with 485 communication function, supporting AIBUS or MODBUS protocol, switchable via the AFC parameter.

Note: This instrument uses automatic zeroing and digital calibration technology, making it a maintenance-free instrument. If the instrument exceeds the specified tolerance limits during metrological verification, the issue can typically be resolved by cleaning and drying the internal components. If drying and cleaning do not restore accuracy, the instrument should be considered faulty and returned to the manufacturer for repair.

## 1.3 Technical Specifications

- **Input specifications** (Compatible with a single instrument):

Thermocouple: K, S, R, E, J, T, B, N, WRe3-WRe25, WRe5-WRe26, etc.

Linear voltage: 0~100mV, 0~20mV, 0~60mV, etc.

Expanded specifications: The users are allowed to specify an additional input specification while retaining the above input specifications (a reference table may be required)

- **Measurement range:**

K(-200~+1300°C), S(-50~+1700°C), R(-50~+1700°C), T(-200~+350°C)

E(0~800°C), J(0~1000°C), B(200~1800°C), N(0~1300°C)

Linear input: -9,990~+32,000, defined by user

- **Measurement accuracy:** 0.25 class

• **Sampling period:** 8 samples per second; when the digital filter parameter FILt=0, the response time is ≤ 0.5 seconds

- **Control period:** Adjustable from 0.24-300.0 seconds

- **Control mode:**

ON/OFF control mode(adjustable hysteresis)

AI artificial intelligence adjustment, featuring advanced control algorithms with fuzzy logic PID control and auto-tuning function

- **Input specifications:**

NOUT and LOUT load capacity: 250VAC/5A

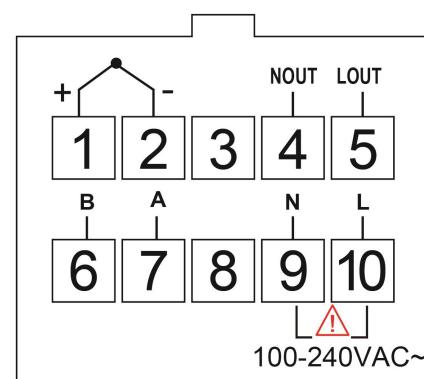
• **Alarm functions:** Four types - high limit, low limit, deviation high limit, deviation low limit, with a power-on alarm bypass option

• **Electromagnetic compatibility:** IEC61000-4-4 (electrical fast transient), ±4KV/5KHz; IEC61000-4-5 (surge), 4KV

• **Isolation withstand voltage:** ≥2300V between the power supply, relay contacts, and signal terminals; ≥600VDC between isolated low-voltage signal terminals

- **Power supply:** 100~240VAC, -15%, +10% / 50~60Hz

- **Power consumption:** 5W without load


- **Operating environment:** -10~60°C; Humidity ≤90%RH

## 1.4 Wiring Methods

*Note: Due to technical upgrades or special orders, if the wiring diagram provided with the instrument*

*differs from this manual, please refer to the included wiring diagram.*

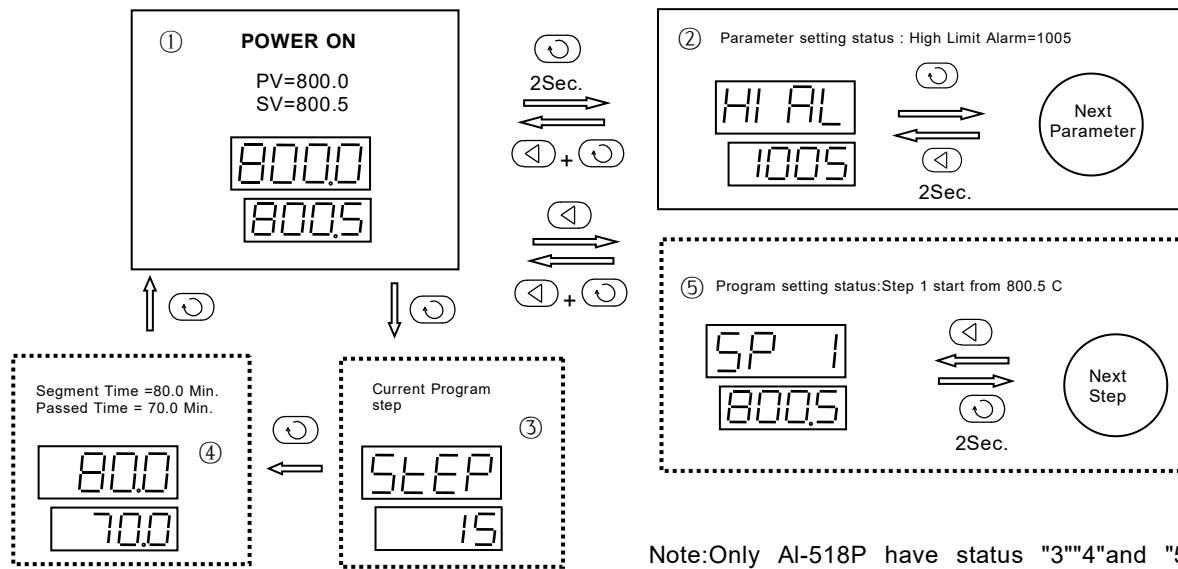
9 and 10 are for connecting the 220VAC power input. 1 and 2 are for thermocouple or mV input. 6 and 7 are 485 communication terminals. 4 and 5 are for output to the load. When outputting from terminals 4 and 5 the terminals are powered, and no additional high-voltage wiring is required. The load can support a maximum current of 5A.




Wiring Diagram for the LED Segment Display in the Upward Orientation

## 2 Display and Operation

### 2.1 Panel Description


- ① Upper display window: Display measured values PV, parameter names, etc.
- ② Lower display window: Display the set value SV, alarm code, parameter values, etc.
- ③ Set key: Used to enter the parameter setting mode and confirm parameter modifications
- ④ Data shift (also serves as a fixed-point control operation)
- ⑤ Data decrease key (also serves as Run/Pause operation)
- ⑥ Data Increase key (also serves as Stop operation)
- ⑦ 4 LED indicators, OUT indicates OP1 logic output; ALM indicates AU2 logic output: The RUN light is on, indicating that the system is in operation; the COM light is on, indicating that the system is communicating with the host computer.

(Note that ALM corresponds to AU2 logic, while LOUT and NOUT require both AU1 and OP1 outputs to be active for conduction)



The instrument enters the basic display state after power-on. At this time, the upper and lower display windows show the measured value (PV) and setpoint (SV), respectively. The lower display window may also alternately display the following characters to indicate status: ① "orAL": Indicates that the input measurement signal is out of range. ② "HIAL", "LoAL", "HdAL", or "LdAL": Indicate high limit alarm, low limit alarm, deviation high limit alarm, or deviation low limit alarm, respectively. ③ "StoP": Indicates the system is in a stopped state. "HoLd": Indicates the system is in a paused or ready state.

## 2.2 Display State



Note: Only AI-518P have status "3""4" and "5" display mode

## 2.3 Operation Methods

### 2.3.1 Setting Parameters

In basic display status, press and hold for about 2 seconds can access Field Parameter List. Press , or can modify a parameter. Press to decrease the data, press to increase the data, the decimal point of the modified data will flash (like a cursor). Press and hold the key to quickly increase/decrease the value, and the speed will automatically increase as the decimal point moves to the right. Or press to directly move the position (cursor) of the modified data, which makes the operation more efficient. Press to save the modified parameter and display the next parameter, keep pressing to quickly go down; press and hold for more than 2 seconds to return to the previous parameter; press and hold first and then press again to exit the parameter setting directly; if there is no key operation, it will automatically return to the basic display status after about 25 seconds.

### 2.3.2 Short-cut operation

All function in AI-516/516P can be accessed through changing parameters. For common operation such as set point editing, changing the status of program RUN/STOP/HOLD, short-cut key is provided. These short-cut can be prohibited to avoid any incorrect operation.

**Set Value Setting:** press to edit status of the current set value, then press , and to directly edit the set value.

**Program setting(only for AI-516P):** press to enter the program setting, the set value of the current running segment is displayed first, and press to display the next data, each program is arranged in the order of "set value-time-set value". Programs can be edited even while the program is running.

**Run the program:** Press and hold for about 2 seconds until the lower display window shows the "run" message. AI-516P will start the program to run or release the running status in the stop status.

**STOP the program:** Press and hold for about 2 seconds until the lower display window shows the "Stop" message. The instrument output will be stopped. The AI-516P program stops running and the parameter StEP for the program segment number was changed to 1.

**Auto Tuning:** Press for 2 seconds, At parameter will appear. Press to change the value of At from OFF to on, then press to activate the auto-tuning process (If SPr parameter is set to be effective and in the

temperature regulating status, auto-tuning will be paused temporary and restart automatically after the temperature finishes rising). During auto tuning, the lower display blinks with At. After two fluctuating cycles by ON-OFF control, the instrument will obtain the optimal PID control parameter value. If you want to quit from auto tuning, press and hold the  for about 2 seconds until the At parameter appear again. Change At from on to OFF, press  to confirm. If the instrument is running the program, the program timer will be paused to avoid changing SV.

**Note 1:** The advanced artificial intelligence algorithm APID in AI-228 instrument is able to avoid overshooting problem over standard PID algorithm and achieve precise control. Both APID and PID can be calculated based on auto-tuning.

**Note 2:** Different set point will result in different PID values from auto-tuning. Please input the set value SV to an value which is often used or mean value. For those furnaces with good heat preservation, the set value can be set at the highest applicable temperature, it is prohibited to edit SV during auto-tuning. Depending on the system, the auto-tuning time may vary from seconds to hours.

**Note 3:** Parameter CHYS has influence on the accuracy of auto-tuning. In general, the smaller the value of CHYS, the higher precision of auto-tuning will be. There is a chance that the CHYS value is too small so as to work as on-off control. Then the resulting PID values will be completely misled. CHYS=2.0 is recommended.

**Note 4:** The control effect at the first run after auto tuning is probably not perfect, but excellent control result will be obtained after a period of time because of self-adaptation.

## 3 Parameter Function

### 3.1 Custom Parameter Table

The AI-516/516P's parameter table programmable definition function allows users to define custom parameters for the instrument. To protect important parameters from unauthorized modification, the parameters that need to be displayed or modified on-site are called on-site parameters. The on-site parameter table is a subset of the complete parameter table and can be defined by the user. These parameters can be directly accessed for modification, while the complete parameter table can only be accessed by entering a password. The parameter lock Loc provides various levels of operation permissions and password input for accessing the complete parameter table. Its functions are as follows:

Loc=0: Allow modification of on-site parameters and direct modification of the setpoint in the basic display state.

Loc=1: Prohibit modification of on-site parameters, but allow direct modification of the setpoint in the basic display state.

Loc=2~3: Allow modification of on-site parameters, but prohibit modification of the setpoint and program values operation via shortcuts. However, shortcut operations such as program run/pause/stop and setpoint control are allowed.

Loc=4~255: Prohibit modification of any parameters other than Loc itself, and also disable shortcut operations.

Set Loc=808 and press  to confirm, the users can enter the display and modify the complete parameter table. Once the complete parameter table is accessed, all parameters except for read-only ones can be modified.

Parameters EP1~EP8 allow users to define 1~8 on-site parameters. If fewer than 8 on-site parameters are needed, the first unused parameter should be defined as nonE. For example, if the required parameter table includes HIAL, HdAL, and At, the EP parameters can be set as follows: EP1=HIAL, EP2=HdAL, EP3=At, EP4=nonE.

Note: Starting from version V9.1, the Loc parameter can be set to restrict communication writing. Please refer to the communication protocol documentation for more details.

## 3.2 Complete Parameter Table

The complete parameter table is divided into 8 major sections: Alarm, Regulation and Control, Input, Output, System Functions, Setpoint/Program, and On-Site Parameter Definitions. These sections are arranged in the following order:

| Parameter | Parameter Meaning          | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Setting Range    |
|-----------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| HIAL      | High Limit Alarm           | <p>When the measured value PV exceeds the HIAL value, the instrument will trigger a high limit alarm. When the measured value PV drops below HIAL-AHYS, the high limit alarm will be cleared.</p> <p>Note: Each alarm can be freely defined to trigger actions on output ports such as AL1, AL2, AU1, AU2, or no action at all. Please refer to the later section for the alarm output definition parameter AOP.</p>                                                                                                                                                                                        |                  |
| LoAL      | Low Limit Alarm            | <p>When the PV is below LoAL, a low limit alarm is triggered. When the PV exceeds LoAL+AHYS, the low limit alarm is cleared.</p> <p>Note: If necessary, HIAL and LoAL can also be set as deviation alarms (refer to the AF parameter description).</p>                                                                                                                                                                                                                                                                                                                                                      | -9990~<br>+32000 |
| HdAL      | Deviation High Limit Alarm | <p>When the deviation (measured value PV - setpoint SV) exceeds HdAL, a high deviation alarm is triggered. When the deviation is less than HdAL-AHYS, the alarm is cleared. This alarm function is disabled when HdAL is set to the maximum value.</p>                                                                                                                                                                                                                                                                                                                                                      | Unit             |
| LdAL      | Deviation Low Limit Alarm  | <p>When the deviation (measured value PV - setpoint SV) falls below LdAL, a low deviation alarm is triggered. When the deviation exceeds LdAL+AHYS, the alarm is cleared. This alarm function is disabled when LdAL is set to the minimum value.</p> <p>Note: If necessary, HdAL and LdAL can also be set as absolute value alarms (refer to the AF parameter description).</p>                                                                                                                                                                                                                             |                  |
| AHYS      | Alarm Hysteresis           | <p>Also known as alarm dead zone or hysteresis, this function helps prevent frequent triggering of the alarm relay at the threshold. Its role is explained above.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0~9999<br>Unit   |
| AdIS      | Alarm Indication           | <p>OFF: The alarm symbol will not be displayed on the lower display when an alarm occurs.</p> <p>on: The alarm symbol will alternate with the measurement values on the lower display when an alarm occurs, serving as a reminder. This mode is recommended.</p> <p>FOFF: Energy-saving/Confidential display mode. In this mode, the instrument will turn off the display of measurement and setpoint values, helping to save power or maintain confidentiality of process temperatures. The lower display will show the current station number, and the alarm symbol will appear when an alarm occurs.</p> |                  |

|      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
|------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| AOP  | Alarm Output Definition                 | <p>The four digits of the AOP—the ones digit, tens digit, hundreds digit, and thousands digit—are used to define the output positions for the four alarms: HIAL, LoAL, HdAL, and LdAL, respectively, as shown below:</p> $\text{AOP} = \underline{3} \quad \underline{3} \quad \underline{0} \quad \underline{1} \quad ;$ <p style="text-align: center;">LdAL    HdAL    LoAL    HIAL</p> <p>The value ranges from 0 to 4. 0 means no alarm output from any port, and 1, 2, 3, 4 correspond to the alarm being output by AL1, AL2, AU1, and AU2, respectively.</p> <p>For example, setting AOP=3301 means that the high limit alarm (HIAL) is output from AL1, the low limit alarm (LoAL) has no output, and both HdAL and LdAL are output from AU1. Thus, either HdAL or LdAL triggering an alarm will cause AU1 to activate.</p> <p>Note 1: To use AL2 or AU2, an L3 dual relay module can be installed at the ALM or AUX position.</p>                                     | 0~4444 |
| nonc | Normally Open/Normally Closed Selection | <p>A single alarm relay can simultaneously provide both normally open and normally closed outputs. However, the dual-channel alarm module L3 only has a normally open output. The normally open output can be defined as a normally closed output through the nonc parameter. When nonc=0, the L3 relays installed at positions AL1, AL2, AU1, and AU2 will all be normally open outputs. When nonc=15, the instrument will output normally closed alarms. When some channels require normally open outputs and others require normally closed outputs, the nonc value can be calculated using the following formula.</p> $\text{nonc} = A \times 1 + B \times 2 + C \times 4 + D \times 8$ <p>In the formula, A, B, C, and D represent the normally open/closed selection for AL1, AL2, AU1, and AU2, respectively. A value of 1 indicates a normally closed output for the corresponding alarm, while a value of 0 indicates a normally open output.</p>                    | 0~15   |
| Ctrl | Control mode                            | <p>OnOff: Adopt ON-OFF control, only suitable for applications with low control requirements.</p> <p>APID: Advanced AI-based PID control algorithm, recommended for use.</p> <p>nPID: Standard PID control algorithm with anti-saturation integral function.</p> <p>PoP: Directly output the PV value, allowing the instrument to function as a temperature transmitter.</p> <p>SoP: The SV value is directly used as the output value.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
| Srun | Operating Status                        | <p>run: Running control state, PRG indicator light is on.</p> <p>StoP: Stop state, with the lower display flashing "StoP" and the PRG light off.</p> <p>HoLd: Hold running control state. If the instrument is set for unlimited-time constant temperature control (when parameter Pno=0 for AI-516 or AI-516P), this state is equivalent to the normal running state but prevents running or stopping operations from being performed on the panel. If the instrument is set for program control (Pno&gt;0), the instrument maintains control output but pauses the timer. In this case, the lower display flashes "HoLd," and the PRG light blinks. The running control or stop can be executed via the panel keys to exit the hold running state.</p> <p>Note: It is not possible to enter the hold running state using only the panel operation. This state can only be entered by directly modifying this parameter or through programming during program execution.</p> |        |

|     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
|-----|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Act | Direct/Reverse Action | <p>rE: Reverse action control mode. When the input increases, the output decreases, such as in heating control.</p> <p>dr: Direct action control mode. When the input increases, the output increases, such as in cooling control.</p> <p>rEbA: Reverse action control with the added feature of eliminating the low limit alarm and deviation low limit alarm upon power-up.</p> <p>drbA: Direct action control with the added feature of eliminating the high limit alarm and deviation high limit alarm upon power-up.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| At  | Auto-tuning           | <p>OFF: The auto-tuning At function is turned off.</p> <p>on: Start the auto-tuning function for PID and Ctl parameters; after the tuning is complete, it automatically returns to FOFF.</p> <p>FOFF: The auto-tuning function is turned off, and starting auto-tuning from the panel is prohibited.</p> <p>AAt: Fast auto-tuning function. After auto-tuning function is complete, it automatically returns to OFF.</p> <p>Note: When the AT parameter is set to the AAt option, the instrument can automatically activate the advanced fast auto-tuning function after power-on when the instrument is in full power heating output state. This allows the PID parameters to be pre-set without the need for traditional cycle oscillation auto-tuning, enabling accurate control in most cases with the first heating. If the AAT function fails to complete before the instrument exits the full power output state, the AAT process fails, the auto-tuning process will be terminated, and the PID parameters will not be modified.</p> |                   |
| P   | Proportional Band     | <p>Define the proportional band for APID and PID regulation, with the unit being the same as the PV value, rather than a percentage of the range.</p> <p>Note: The At function is typically used to determine the P, I, D, and Ctl parameter values, but for familiar systems, such as batch-produced heating equipment, the known correct P, I, D, and Ctl values can be directly input.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1~32000<br>Unit   |
| I   | Integral Time         | Define the integral time for PID regulation in seconds, and the integral action is canceled when I=0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1~9999<br>seconds |
| d   | Derivative Time       | Define the derivative time for PID control, with the unit in 0.1 seconds. When d=0, the derivative action is disabled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0~3200<br>seconds |

|                                                 |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                   |     |                   |     |                         |     |                         |     |                         |     |                            |     |                          |     |                          |              |  |              |  |                                                 |  |                                              |  |                   |  |       |
|-------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|-----|-------------------|-----|-------------------------|-----|-------------------------|-----|-------------------------|-----|----------------------------|-----|--------------------------|-----|--------------------------|--------------|--|--------------|--|-------------------------------------------------|--|----------------------------------------------|--|-------------------|--|-------|
| Ctl                                             | Control Cycle                              | <p>When SSR, SCR or current output is used, it is typically set between 0.5-3.0 seconds. When using relay switch outputs or in heating/cooling dual-output control systems, a short control cycle can shorten the lifespan of mechanical switches or cause frequent switching between heating and cooling outputs. If the cycle is too long, it may reduce control accuracy. Therefore, it is generally set between 15-40 seconds, with the recommended Ctl set to 1/5~1/10 of the differential time (which should roughly equal the system's lag time).</p> <p>If the output uses relay switch (when OPT or Aut is set to rELY), the actual Ctl will be limited to over 3 seconds, and the auto-tuning At will automatically set Ctl to an appropriate value, balancing control accuracy and mechanical switch lifespan.</p> <p>When the control mode parameter Ctrl is set to ON-OFF mode, Ctl defines the delay time for output disconnection or ON action after power-up, preventing immediate reconnection after disconnection. This function is designed to protect the compressor's operation.</p> | 0.2~300.0 seconds |                   |     |                   |     |                         |     |                         |     |                         |     |                            |     |                          |     |                          |              |  |              |  |                                                 |  |                                              |  |                   |  |       |
|                                                 |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                   |     |                   |     |                         |     |                         |     |                         |     |                            |     |                          |     |                          |              |  |              |  |                                                 |  |                                              |  |                   |  |       |
|                                                 |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                   |     |                   |     |                         |     |                         |     |                         |     |                            |     |                          |     |                          |              |  |              |  |                                                 |  |                                              |  |                   |  |       |
| CHYS                                            | Control Hysteresis (Dead Zone, Hysteresis) | <p>This is used to prevent the relay from frequent switching in ON-OFF control mode.</p> <p>For reverse action (heating) control, when PV is greater than SV, the relay turns off. The output reconnects when PV is less than SV-CHYS. For direct action (cooling) control, when PV is less than SV, the output turns off. The output reconnects when PV is greater than SV+CHYS.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0~9999 Unit       |                   |     |                   |     |                         |     |                         |     |                         |     |                            |     |                          |     |                          |              |  |              |  |                                                 |  |                                              |  |                   |  |       |
| InP                                             | Input Specifications Code                  | <p>InP is used to select the input specification, and its value corresponds to the following input specification:</p> <table border="1"> <tr><td>0 K</td><td>17 K (0~300.00°C)</td></tr> <tr><td>1 S</td><td>18 J (0~300.00°C)</td></tr> <tr><td>2 R</td><td>25 0~75mV voltage input</td></tr> <tr><td>3 T</td><td>28 0~20mV voltage input</td></tr> <tr><td>4 E</td><td>30 0~60mV voltage input</td></tr> <tr><td>5 J</td><td>35 -20~+20mV voltage input</td></tr> <tr><td>6 B</td><td>38 10~50mV voltage input</td></tr> <tr><td>7 N</td><td>39 15~75mV voltage input</td></tr> <tr><td>8 WRe3-WRe25</td><td></td></tr> <tr><td>9 WRe5-WRe26</td><td></td></tr> <tr><td>10 User-specified extended input specifications</td><td></td></tr> <tr><td>12 F2 radiation high temperature thermometer</td><td></td></tr> <tr><td>13 T (0~300.00°C)</td><td></td></tr> </table> <p>Note 1: When setting InP=10, a custom input nonlinear table can be defined or it can be input by the manufacturer for an additional fee.</p>                                                                                | 0 K               | 17 K (0~300.00°C) | 1 S | 18 J (0~300.00°C) | 2 R | 25 0~75mV voltage input | 3 T | 28 0~20mV voltage input | 4 E | 30 0~60mV voltage input | 5 J | 35 -20~+20mV voltage input | 6 B | 38 10~50mV voltage input | 7 N | 39 15~75mV voltage input | 8 WRe3-WRe25 |  | 9 WRe5-WRe26 |  | 10 User-specified extended input specifications |  | 12 F2 radiation high temperature thermometer |  | 13 T (0~300.00°C) |  | 0~106 |
| 0 K                                             | 17 K (0~300.00°C)                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                   |     |                   |     |                         |     |                         |     |                         |     |                            |     |                          |     |                          |              |  |              |  |                                                 |  |                                              |  |                   |  |       |
| 1 S                                             | 18 J (0~300.00°C)                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                   |     |                   |     |                         |     |                         |     |                         |     |                            |     |                          |     |                          |              |  |              |  |                                                 |  |                                              |  |                   |  |       |
| 2 R                                             | 25 0~75mV voltage input                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                   |     |                   |     |                         |     |                         |     |                         |     |                            |     |                          |     |                          |              |  |              |  |                                                 |  |                                              |  |                   |  |       |
| 3 T                                             | 28 0~20mV voltage input                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                   |     |                   |     |                         |     |                         |     |                         |     |                            |     |                          |     |                          |              |  |              |  |                                                 |  |                                              |  |                   |  |       |
| 4 E                                             | 30 0~60mV voltage input                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                   |     |                   |     |                         |     |                         |     |                         |     |                            |     |                          |     |                          |              |  |              |  |                                                 |  |                                              |  |                   |  |       |
| 5 J                                             | 35 -20~+20mV voltage input                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                   |     |                   |     |                         |     |                         |     |                         |     |                            |     |                          |     |                          |              |  |              |  |                                                 |  |                                              |  |                   |  |       |
| 6 B                                             | 38 10~50mV voltage input                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                   |     |                   |     |                         |     |                         |     |                         |     |                            |     |                          |     |                          |              |  |              |  |                                                 |  |                                              |  |                   |  |       |
| 7 N                                             | 39 15~75mV voltage input                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                   |     |                   |     |                         |     |                         |     |                         |     |                            |     |                          |     |                          |              |  |              |  |                                                 |  |                                              |  |                   |  |       |
| 8 WRe3-WRe25                                    |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                   |     |                   |     |                         |     |                         |     |                         |     |                            |     |                          |     |                          |              |  |              |  |                                                 |  |                                              |  |                   |  |       |
| 9 WRe5-WRe26                                    |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                   |     |                   |     |                         |     |                         |     |                         |     |                            |     |                          |     |                          |              |  |              |  |                                                 |  |                                              |  |                   |  |       |
| 10 User-specified extended input specifications |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                   |     |                   |     |                         |     |                         |     |                         |     |                            |     |                          |     |                          |              |  |              |  |                                                 |  |                                              |  |                   |  |       |
| 12 F2 radiation high temperature thermometer    |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                   |     |                   |     |                         |     |                         |     |                         |     |                            |     |                          |     |                          |              |  |              |  |                                                 |  |                                              |  |                   |  |       |
| 13 T (0~300.00°C)                               |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                   |     |                   |     |                         |     |                         |     |                         |     |                            |     |                          |     |                          |              |  |              |  |                                                 |  |                                              |  |                   |  |       |
| dPt                                             | Decimal Point Position                     | <p>Four display formats are available for selection: 0, 0.0, 0.00, and 0.000.</p> <p>Note: When using a standard thermocouple input, only the 0 or 0.0 formats can be selected. Even when the 0 format is selected, an internal resolution of 0.1°C is maintained for control calculations. For type S thermocouples, it is recommended to select the 0 format. When InP=17, 18, or 22, the instrument has an internal resolution of 0.01°C, and the display formats 0.0 or 0.00 can be selected.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                   |     |                   |     |                         |     |                         |     |                         |     |                            |     |                          |     |                          |              |  |              |  |                                                 |  |                                              |  |                   |  |       |

|      |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |
|------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| SCL  | Input Scale Lower Limit                               | Used to define the lower scale value for the linear input signal. When the instrument is used for transmission output or bar graph display, it also defines the lower scale limit for the signal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -9990~<br>+32000<br>Unit |
| SCH  | Input Scale Upper Limit                               | Used to define the upper scale value for the linear input signal. When the instrument is used for transmission output or bar graph display, it also defines the upper scale limit for the signal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
| Scb  | Input Offset Correction                               | The Scb parameter is used to apply a translation correction to the input, compensating for errors in the sensor, input signal, or thermocouple cold-junction compensation.<br><br>Note: Generally it should be set to 0. Incorrect settings can lead to measurement errors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -9990~<br>+4000<br>Unit  |
| FILT | Input Digital Filtering                               | The FILt determines the strength of the digital filtering. The higher the setting, the stronger the filtering, but the slower the response speed of the measurement data. When the measurement is subject to significant interference, gradually increase FILt to reduce the instantaneous fluctuations of the measurement value to less than 2~5 counts. When the instrument undergoes metrological verification, FILt should be set to 0 or 1 to improve the response speed. The unit of FILt is 0.5 seconds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0~99                     |
| Fru  | Power Supply Frequency and Temperature Unit Selection | 50C indicates that the power supply frequency is 50Hz, providing maximum resistance to interference for inputs at this frequency. The temperature unit is °C.<br><br>50F indicates that the power supply frequency is 50Hz, providing maximum resistance to interference for inputs at this frequency. The temperature unit is °F.<br><br>60C indicates that the power supply frequency is 60Hz, providing maximum resistance to interference for inputs at this frequency. The temperature unit is °C.<br><br>60F indicates that the power supply frequency is 60Hz, providing maximum resistance to interference for inputs at this frequency. The temperature unit is °F.                                                                                                                                                                                                                                                                                                                                               |                          |
| OPt  | Output Type                                           | SSr: The output provides SSR driving voltage or zero-crossing trigger time signal for SCR. Modules such as G, K1, or K3 should be installed to adjust the output power by modifying the on-off time ratio, with a typical cycle of 0.5-4.0 seconds.<br><br>rELY: This setting should be used when the output is for a relay contact switch or when the system has mechanical contact switches (such as in contactors or compressors). To protect the mechanical contacts' lifespan, the system limits the output cycle to 3-120 seconds. It is generally recommended to set the cycle time to 1/5-1/10 of the system's lag time.<br><br>0-20: 0~20mA linear current output, the installation of the X3 or X5 linear current output module is required.<br><br>4-20: 4~20mA linear current output, the installation of the X3 or X5 linear current output module is required.<br><br>PHA1: Single-phase phase-shift output. To achieve phase-shift output, the K50/K60 phase-shift trigger output module must be installed. |                          |
| OPL  | Output Low Limit                                      | When set to 0~100%, this represents the minimum output limit for the adjustment output OUTP in typical unidirectional control.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0~110%                   |

|      |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                               |
|------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| OPH  | Output High Limit                                                                             | When the measured value PV is lower than the OEF, it limits the maximum output value of the main output OUTP. The OPH setting must be greater than the OPL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0~110%                                        |
| OEF  | OPH Effective Range                                                                           | <p>When the measured value PV is less than the OEF, the output high limit of OUTP is OPH. When PV exceeds the OEF value, the regulator output is not limited and reaches 100%.</p> <p>Note: This function is used in situations where full power heating is not allowed at low temperatures. For example, when drying moisture in a furnace or preventing too rapid heating, a heater may be allowed only up to 30% of the maximum heating power when the temperature is below 150°C. In this case, the settings can be: OEF=150.0(°C), OPH=30(%).</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -999.0~<br>+3200.0<br>°C or<br>Linear<br>Unit |
| Addr | Communication Address                                                                         | The Addr parameter is used to define the instrument communication address, and the valid range is 0~99. Instruments on the same communication line should have different Addr values to distinguish them from each other.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0~99                                          |
| bAud | COMM Module Function Selection                                                                | <p>The bAud parameter defines the communication baud rate, with a configurable range of 0~28800 bit/s (28.8K). When the COM port is not used for communication, the bAud parameter can be set to configure the COM port to other functions:</p> <p>bAud=0: Configure the COMM port for 0~20mA measured value transmission output</p> <p>bAud=1: Serve as an external digital input, with functionality equivalent to the MIO position. If the MIO position is occupied, the I2 module can be installed in the COMM position.</p> <p>bAud=2: Configure the COMM/AUX port as AU1 + AL1 output, applicable for D2 or D6 size instruments requiring event output (requires L3 module installation).</p> <p>bAud=3: Configure the COMM/AUX port as AUX output, applicable for D2 or D6 size instruments.</p> <p>bAud=4: Configure the COMM port for 4~20mA measured value transmission output.</p> <p>bAud=8: Configure the COMM port for 0~20mA setpoint transmission output.</p> <p>bAud=12: Configure the COMM port for 4~20mA setpoint transmission output.</p>                                                                                                              | 0~28.8K                                       |
| Et   | Event input type<br>(Install the I2 module in the MIO or COMM position)<br>[only for AI-516P] | <p>The Et event input is expanded to 2 channels (using dual channels requires installing a module such as I5). Et parameter = Et1*10+Et2, where Et1 and Et2 represent Event Input 1 and Input 2, respectively. The numerical meanings of Et1 or Et2 are as follows:</p> <p>0[nonE]: Disable event input function.</p> <p>1[ruSt]: Run / Stop switching function. Connected in short time, start to running program, keep connect more than 2 sec, program switch to stop.</p> <p>2[SP1.2]: Switching SV under set point(Pno=0) regulation; when MIO in open status, SV=SP1; when MIO in close status, SV=SP2.</p> <p>3(PId2): For unidirectional control (non-heating/cooling dual output control), when the MIO switch is open, the P, I, d, and Ctl parameters are used for calculation and adjustment; when the MIO switch is closed, the P2, I2, d2, and Ctl2 parameters are used for adjustment calculation.</p> <p>4[EAct]: External switch for heating/cooling control function switching. When the MIO switch is open, the P, I, d, and Ctl parameters are used for heating adjustment; when the MIO switch is closed, it switches to using the P2, I2, d2, and</p> |                                               |

|    |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
|----|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|    |                        | <p>Ctl2 parameters for cooling adjustment.</p> <p>5[Eman]:External digital switch for manual/auto mode switching. The instrument is in automatic mode when the switch is open, and in manual mode when the switch is closed.</p> <p>6[Erun]: External switch to RUN/STOP. Instrument stops when switch is off and runs when switch is on.</p> <p>7[Eout]:The main output is forced to 0 or Ero output when the external switch is closed (according to the function setting of parameter AF2.E).</p> <p>Note: If Et1 is set equal to Et2, the system will execute Et1 first, followed by Et2, and the result will be based on Et2.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| AF | Advanced Function Code | <p>The AF parameter is used to select the advanced function, and its calculation method is as follows:</p> $AF = A \times 1 + B \times 2 + C \times 4 + D \times 8 + E \times 16 + F \times 32 + G \times 64 + H \times 128$ <p>A=0: HdAL and LdAL function as deviation alarms. A= 1: HdAL and LdAL function as absolute value alarms, allowing the instrument to have 2 groups of absolute value high limit alarms and absolute value low limit alarms.</p> <p>B=0: The alarm and ON-OFF hysteresis work as unilateral hysteresis. B=1: As bilateral hysteresis.</p> <p>C=0: The third row of the instrument includes one decimal place. C=1: The third row of the instrument does not include a decimal point (only applicable for three-row display).</p> <p>D=0: The password to access the parameter table is the public 808. D=1: The password is the value of the parameter PASd. Long press the left button to find LOC after switching to the field parameter.</p> <p>E=0:HIAL and LOAL function as the absolute value high limit alarm and the absolute value low limit alarm, respectively. E=1: HIAL and LOAL change to deviation high limit alarm and deviation low limit alarm, respectively, allowing for 4 deviation alarms.</p> <p>F=0 indicates fine control mode, where the internal control resolution is 10 times the display resolution, but for linear input, the maximum display value is limited to 3,200 units. F=1 represents high-resolution display mode. This mode should be selected when the required display value exceeds 3,200.</p> <p>G=0: A high limit alarm is allowed when the measurement value increases due to sensor disconnection (the high limit alarm setting value should be below the signal's upper range limit). G=1: A high limit alarm is not allowed when the measurement value increases due to sensor disconnection. Please note that in this mode, even normal high limit alarms (HIAL) will be delayed by approximately 15 seconds before being triggered.</p> <p>H=0: HIAL and LOAL follow independent alarm logic. H=1: HIAL and LOAL are changed to interval alarms, where an alarm will only trigger when LOAL&gt;PV&gt;HIAL. The alarm code will be HIAL, and the output will also use HIAL.</p> <p>Note: For non-expert users, this parameter can be set to 0.</p> | 0~255 |

|      |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |
|------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| AFC  | Communication Mode                          | <p>The AFC parameter is used to select the communication mode, calculated as follows:</p> $AFC = A \times 1 + D \times 8 + G \times 64.$ <p>A = 0: The communication protocol used by the instrument is standard MODBUS. A = 1: The communication protocol used by the instrument is AIBUS. A = 2: The communication protocol used by the instrument is MODBUS compatibility mode. A = 4: The communication protocol used by the instrument is compatible with S6 module communication functionality.</p> <p>D = 0: No parity check. D = 1: Even parity check.</p> <p>G = 0: AUX is used for normal operation. G = 1: AUX is used as an event input.</p> <p>Note: When the AFC is set to the MODBUS protocol, it supports two commands: 03H (read parameter and data) and 06H (write single parameter). When AFC = 0 or 4, the 03H command can read up to 20 words of data in a single request. When AFC= 2, the 03H command will read a fixed amount of 4 words of data. For detailed information, please refer to the communication protocol instruction.</p> | 0~255             |
| PASd | Password                                    | <p>When PASd is set between 0-255 or AF.D=0, setting Loc=808 allows access to the complete parameter table.</p> <p>When PASd is set between 256-9999 and AF.D=1, Loc=PASd must be set to access the complete parameter table.</p> <p>Note: Only expert-level users are allowed to set PASd. It is recommended to use a unified password to avoid forgetting it.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0-9999            |
| SPL  | Setpoint Lower limit                        | The minimum value allowed to be set for the SP* parameter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -9990~<br>+30000  |
| SPH  | Setpoint Upper Limit                        | The maximum value allowed to be set for the SP* parameter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Unit              |
| SPr  | Rate limiting to heating(only for AI-516P)  | <p>Provided that SPr is set, the program start with the first step of ramp slope limited by SPr value until the temperature reach the first SV, if PV&lt;SV. PRG indicator blinks.</p> <p>For Ramp mode. SPr had effect on first step only.</p> <p>For Soak mode, SPr had effect on each step.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0~3200<br>°C/ min |
| Pno  | Numbers of program steps (only for AI-516P) | <p>To define the quantity of program step to be used and hide the unnecessary ones for ease of configuration and operation.</p> <p>Pno= 0, disable the program running mode, then AI-516P will same as AI-516, meanwhile, can set the parameter "SPr" to limit the ramp time.</p> <p>Pno=1~30, AI-516P working as normal programmable controller</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0~30              |
| PonP | Power-on Automatic Operation Mode           | <p>Cont: If the instrument was in a stop state before power-off, it will continue in the stop state; otherwise, it will resume execution from the last stopped point after power-on.</p> <p>StoP: After power-on, regardless of the situation, the instrument will enter the stop state.</p> <p>run1: If the instrument was in a stop state before power-off, it will continue in the stop state; otherwise, it automatically restarts the program from the beginning after power-on.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |

|         |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
|---------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|         |                                           | <p>dASt: After power-on, if there is no deviation alarm, the program will continue to execute; if there is a deviation alarm, the operation will stop.</p> <p>HoLd: If the instrument is powered off during operation, it will enter a paused state upon power-on, regardless of the situation. However, if the instrument was in a stop state before power-off, it will remain in the stop state after power-on.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| PAF     | Program operation mode (only for AI-516P) | <p>PAF is used to select program control, and its calculation method is as follows:</p> $PAF = A*1+B*2+C*4+D*8+E*16+F*32+G*64+H*128$ <p>A=0, function (rdy) disabled; A=1, function enabled.</p> <p>B=0, ramp mode; If there is a temperature difference during program operation, different heating modes can be defined according to the transition line, and cooling operation can also be performed; B=1, soak mode (constant temperature mode), each step of the program defines the set value and holding time, rdy is used to limit the conditions to enter the next step; even if B=0 is set, if the command in the last step of the program is not STOP, the constant temperature mode will still be executed, and it will automatically end when the time is up.</p> <p>C=0, in minutes; C=1, in hours.</p> <p>D=0, without PV startup function; D=1, with PV startup function.</p> <p>E=0, Program Event Output 1 and Program Event Output 2 are assigned to AL1 and AL2, respectively; E=1, Program Event Output 1 and Program Event Output 2 are assigned to AU1 and AU2, respectively.</p> <p>F=0, standard operation mode; F=1, HoLd status when the program RUN.</p> <p>G=0, The program duration is determined by parameter C; G=1, in seconds.</p> <p>H=0, standard operation mode; H=1, each step has preparation function (rdy) in ramp mode.</p> | 0~255 |
| EP1-EP8 | Field Use Parameter Definition            | 1~8 field parameters can be defined as commonly used parameters that require modification by the on-site operator after the Loc lock is applied. If there are fewer than 8 field parameters, their values can be set to nonE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |

### 3.3 Special Functions Supplementary Notes

#### 3.3.1 Alarm Bypass on Power-On

When the instrument is just powered on, it often leads to unnecessary alarms. For example, in electric furnace temperature control (heating control), when powered on, the actual temperature is far below the set temperature. If the user has configured low limit alarms or deviation low limit alarms, the instrument will trigger an alarm immediately upon power-on, even though there may not be any actual issues with the control system. On the contrary, in cooling control (direct-acting control), powering on may lead to high limit alarms or deviation high limit alarms. Therefore, the AI instrument provides a power-on alarm bypass feature. When the Act parameter is set to rEbA or drbA, the instrument will not trigger an alarm immediately upon power-on, even if the corresponding alarm conditions are met. The alarm will only occur if the alarm condition is cleared, and the same condition is met again.

#### 3.3.2 Communication Function

The AI series instruments can install an S or S4 type RS485 communication interface module at the COMM position to enable multi-device connection with a computer. Through the computer, various operations and functions of the instrument can be controlled. For computers without an RS485 interface, an RS232C/RS485 converter or USB/RS485 converter can be added. Each communication port can directly connect 1-60 instruments, and with the addition of an RS485 repeater, up to 80 instruments can be connected. A single computer can support multiple communication ports for connection. Note that each instrument should be set to a different address. When a large number of instruments are involved, two or more computers can be used, with these computers forming a local network. The manufacturer provides AIFCS application software, which can run on Chinese Windows operating systems. It allows for centralized monitoring and management of 1~120 AI series instruments of various models, and can automatically record measurement data and print reports. If users wish to develop their own configuration software and need to obtain the communication protocol, they can request it for free from the instrument sales personnel. There are various configuration software options available that support communication with AI instruments.

#### 3.3.3 Fine Control

Fine control refers to the fact that the resolution of the PID calculation is 10 times higher than the display resolution. For example, while the instrument may display the temperature signal as 1°C, the internal PID calculation and control will still operate with a resolution of 0.1°C. This allows for significantly higher control accuracy compared to the displayed resolution. In previous versions of the AI series instruments, only the temperature signal used fine control mode. In the new version, fine control mode is applied by default for linear inputs whenever the display value range is below 3000 counts (as most industrial applications typically do not exceed 3000). This ensures higher control accuracy and more stable output. However, if a display value range greater than 3000 is required, the setting AF.F = 1 can be used.

#### 3.3.4 Multi-Segment Linear Correction Function for Input Signals

When the input specification InP is set by adding 64, the instrument enables the multi-segment linear correction function for the input signal. The setting method is as follows: set the Loc parameter to 3698 to enter the table setting mode. (If the original Loc=808, first change Loc to 0, exit the parameter setting mode, then re-enter the parameter setting mode and set Loc to 3698). The separate settings are as follows:

**A00:** 0;

**A01:** Input signal and display setting:

$$A\ 01=A\times 1+E\times 16+G\times 64$$

**A** indicates signal range: A=0, 0~20mV (0-80 ohm); A=1, 0~60mV (0-240 ohm); A=2, 0~100mV (0-400 ohm).

**E** indicates signal display: E=0, no effect; E=1, the table d00~d59 setting value correspond to the display value.

**G** indicates signal type: G=0, thermocouple; G=1.

For example: If the signal is thermocouple input, temperature class, then set A01=2×1+1×16+0×64=18

**A02:** Starting temperature

**A03:** Measurement range = Maximum measurement value-A02

**A04:** Temperature interval per segment = A03/number of segments

**d00~d59::** Temperature setting value per segment

For example: The type K thermocouple input range is from 0 to 300 degrees, with one decimal place, and corrections are applied every 100 degrees. Then set parameters A00=0, A01=18, A02=0.0, A03=300.0, A04=100.0, d00=0.0,d01=100.0, d02=200.0, d03=300.0. To make a correction, simply set the corresponding temperature point higher or lower. For example, if the instrument displays 200.0°C, but the calibration device measures 202.0°C, change d02=200.0 to d02=202.0.

Note: The correction value applies to each point, and the transition between points is automatically linear. Once this function is enabled, the instrument will only display values within the temperature range set in the table. If the actual temperature exceeds the table range, the instrument will display an orAL over-range alarm.

### 3.3.5 High-Temperature Furnace Nonlinear Power Control Function

For high-temperature furnaces with nonlinear loads, the resistance changes drastically with temperature. Taking a silicon-molybdenum rod furnace as an example, the room temperature resistance is only about 6% of the resistance at 1600°C. If the output power of the instrument is not limited or adjusted, two issues may arise. First, during low-temperature startup, the furnace current may exceed the maximum allowable load of the power grid, SCR, and transformer, potentially damaging the SCR, furnace, and transformer or causing the power grid to trip. Additionally, since the furnace power varies by more than 10 times between the low and high temperature regions at the same instrument output, this means that the proportional band P in the PID parameters must change by more than 10 times across different temperatures to achieve accurate temperature control in both the low and high-temperature regions. Using the OPH limiting parameter method can only limit the output power and cannot adjust the proportional band. To ensure precise temperature control in both low and high-temperature regions, multiple sets of PID parameters must be configured, which not only complicates the setup but also reduces the effectiveness. The custom output limit transformation function solves both the output limitation and the transformation of the proportional band P. This function limits and adjusts the instrument's output based on the measured temperature. It not only restricts the power in the low-temperature zone but also automatically corrects the proportional band parameters at different temperatures. Both the power limitation and the changes in the proportional band are applied in a continuous piecewise linear manner, which is more effective than using proportional grouping. The power limitation only proportionally reduces the instrument's actual output, while the display range of the instrument remains 0~100%. For example, when used with a silicon-molybdenum rod furnace, the settings can be as follows (customers may modify the data according to their requirements):

A00=1, A 01=1050, A02=100.0; A03=1500; A04=750.0, d00=120.0; d01=1100, d02=2000

When the parameters A00=1 and A01=1050 are set, the instrument enables the custom output limit transformation function. A02 represents the starting temperature for output limitation, A03 represents the temperature range for output limitation, and A04 represents the segment length for the non-linear data

temperature segments. In this case,  $1500/750.0=2$ , which means there are 2 segments. The more segments there are, the more complex and detailed the curve can be. d00 indicates the maximum output power below A02, with the unit being  $100\% \times (1/2000)$ . d00=120.0 represents 6%, d01 represents 55%, and d02 represents 100%.

This curve means that when the temperature is below 100°C, the output power is limited to 6%. Between 100°C and 850°C, the power limit smoothly transitions from 6% to 55%. Between 850°C and 1600°C, the power limit transitions from 55% to 100%. Above 1600°C, there is no power limitation, and it remains at 100%.

**Note:** The range of d-value is 0~59, which corresponds to a maximum of 60 segments of power limitation. This function cannot be used simultaneously with the multi-segment linear correction function. If special input specifications are required at the same time, please contact the sales personnel to discuss embedding them into the instrument. However, this may incur a one-time additional fee.

## 4 Program Control(only for AI-516P)

The AI-516P program type instrument is used in situations where it is needed to automatically change the set value to control according to a certain time rule. It not only has the function of 50 steps programming, which can set the rise and fall slope of any set value, but also has programmable/operable commands such as jump, run, pause and stop, which can edit the program during controlling; in addition, it has functions like power failure processing, process value startup and preparation, which makes program more efficient and perfect.

### 4.1 Functions and Concepts

**Program step:** The number of the program Step can be defined from 1 to 50. The current Step is the program Step being executing.

**Program time:** refers to the total running time set for the program step, in minute or hour, with effective values ranging from 0.1 to 3200.

**Running time:** refers to the running time of the current step. When the running time reaches the set period, the program automatically moves to the next period.

**Jump:** the program step can be programmed to automatically jump to any step to achieve circle-control. Or it can also be achieved by editing the value of StEP.

**Run** (run/HoLd): When the program is in the running status, the time shall be timed, and the changes of the set value follow the prearranged program curve. When it is changed to suspend status (suspended), the timing function stops and the set value remains unchanged. The suspend operation (HoLd) can be programmed in the program step instead of the panel.

**Stop:** it will stop the program running. Here the running time is cleared and the timing as well as the output is stopped. In this situation, if the instrument is required to run, start the step number set by StEP. Autostop is allowed to be programmed into steps and the StEP value of the run step is set. Or stop the operation artificially at any time (StEP is set to 1, which can be modified by the user). If the program step has run through the last step defined in the Pno parameter, it stops automatically.

**Power cut/ resume event handling:** it refers to the power on or the accidental power failure during operation. A variety of solutions can be found by setting PonP parameters.

**PV preparation function (rdy):** When the program is running and the power is cut off/started unexpectedly but the operation needs to continue, if the process value is different from the set value (if the program allows starting with the process value, start with the process value; and if the process value works well, the preparation function is unnecessary, and only when the process value does not meet the requirements for starting can the preparation function be used for processing), and when PV-SV>deviation alarm value (HdAL and LdAL), the

instrument will not immediately give a positive (or negative) deviation alarm. On the contrary, it will adjust the process value until its error is less than the deviation alarm value. Here the timing will be suspended, and the deviation alarm signal will not be output. The program will not be started again until the positive and negative deviations meet the requirements. The preparation function can also be used to set the program step with unpredictable rise/drop time, which can be achieved by setting PAF parameters; It can ensure the integrity of the whole program curve, but it is possible to increase the total running time due to the preparation time. The preparation function and process value startup can be used to solve the uncertainty of program operation caused by the inconsistency between the process value and the set value during startup, so as to obtain efficient, complete and satisfactory results.

**PV Startup:** When the program is started and the power is cut off/started unexpectedly but the operation needs to continue, the actual process value is often different from the set value set by the computer, which is sometimes unexpected and unpredictable. For example, set a heating section from 25 °C to 625 °C after 600 minutes, and the temperature will rise by 1 °C every minute. It is assumed that when starting from the starting position of this program step, if the process value is just 25 °C, the program can run successfully as originally planned, but if the system temperature has not been reduced at the time of starting, for example, 100 °C, then the program cannot run successfully as originally planned. Thus the startup function of the process value can be realized by automatically adjusting the running time of the instrument to make them consistent; In the above case, if the measuring temperature is 100 °C when starting the operation, the instrument will automatically set the running time to 75 minutes, so that the program can be started directly from the position of 100 °C.

**Curve fitting:** it is a controlling technology adopted by AI-516P instrument. Because the control objects usually lag behind time, the instrument automatically smoothes the linear rise, drop and constant temperature curves at the break point. The smoothness is related to the system's lag time  $t$  ( $t$ =differential time  $d$ +control period  $Ctl$ ). The greater  $t$  is, the greater the smoothness is, and vice versa. The smaller the lag time (such as thermal inertia) of the control object, the better the control effect. The overshoot can be avoided by processing the program curve according to the way of the curve fitting.

**Note:** The characteristic of curve fitting makes the program control generate a fixed negative deviation during linear temperature rise and a fixed positive deviation during linear temperature drop. The value of the deviation is proportional to the lag time ( $t$ ) and the rate of temperature rise (fall). It is a normal phenomenon.

## 4.2 Program Arrangement

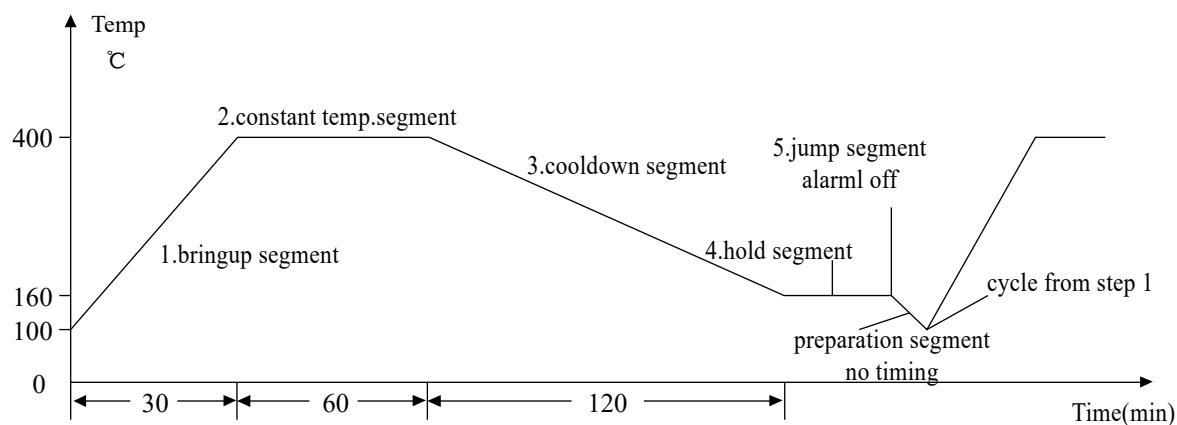
### 4.2.1 Ramp Mode

When the parameter PAF.B=0, the program arrangement is set in the format of temperature-time-temperature, which means temperature "A"(SP 1), passed Time "A"(t01), then reached Temperature "B"(SP 2). The unit of temperature is the same as PV (processed value). The unit of time can be minute or hour. In ramp mode, when the program pointer reaches the last step number defined in Pno parameter, the instrument will hold the time ( $t$ ) at the temperature (SPx) then ends the program, unless the SPx value is a command for stop or jump. The following example includes 5 steps, which is linear temperature heating up, constant temperature, linear temperature cooling down, jump cycling, ready, Hold.

Step 1: SP 1=100 , t 1=30.0; Start linear temperature heating up from 100 °C. Time required is 30 minutes.

Rate of temperature increase is 10 °C/minute.

Step 2: SP 2=400 , t 2=60.0; Temperature 400 °C is kept for 60 minutes.


Step 3: SP 3=400 , t 3=120.0; Temperature cooling at a rate of cooling is 2 °C/minute. Time needed is 120

minutes to reach SP4

Step 4: SP 4=160 , t 4=0.0; When temperature reached 160 degree, the program paused (HoLd status). User has to execute “run” to proceed to next steps.

Step 5: SP 5=160 , t 5=-1.0; Jump to Step 1 to start from beginning in a loop.

In the example above, When the program jump from step 5 to step 1, the temperature is 160°C which is not equal to the value of step 1 as 100°C. The step 5 is a command step as well. Assuming that the deviation high alarm is set to 5°C, before the program jumping from step 5 to step 1, it will activate PV Preparation/Ready function (if PV Preparation/Ready “rdy” was enabled) to regulate the temperature until the deviation between PV and SV is less than deviation high alarm value, i.e. 105°C. Then the program will be started from Step 1 again. The temperature control curve is illustrated below.



The advantage of applying “temperature-time-temperature” arrangement is to provide a wide window of setting rate of increasing and decreasing temperature. The format of increasing and decreasing temperature steps keep the same format, for easy to learn. There is a high flexibility to set the curve, enabling possibility to input continuous increasing curves (e.g. using different rate of increasing curve to achieve functional heating) or continuous temperature holding steps

#### 4.2.2 Soak Mode

When the parameter PAF.B=1, soak mode is selected. This is suitable for the process which does not need to establish the temperature slope, simplifying the programming and using the quantity of steps more effectively. Each step contains the meaning of “temperature ~ holding time at that temperature”. Parameter “SPr” defines the rate of temperature change among steps. If “SPr=0”, the rate will set to maximum. Since the time of temperature increasing and it occupies the holding time, PV preparation/Ready function “rdy” is advised to be used to ensure to obtain the correct soak time (holding time).

#### 4.2.3 Time Setting

**Set “t-xx” = 0.1~3200 (min)**

Set the time of Step xx. (Time unit can be change to hour by parameter “PAF”.)

**Set “t-xx” = 0.0**

The program pauses (HoLd) on Step xx. The program will be paused and timer pauses counting.

**Set “t-xx” = -121.0**

The program stops(StoP), and go into stop status.

**Set “t-xx” = -0.1~-122.0** Negative value in time value represents a command (a jump operation + event output). The integral part “-1~120” refers to the step number to jumped to. Step number greater than Pno (Number of program step) with non-zero decimal space does nothing but proceed to next step. Decimal place refers to programming of event output at AL1 and AL2. -XXX.0 indicates the event is none but step jumping only. Please note that if parameter AOP assigns alarm action at AL1 or AL2, no matter event outputs or ordinary alarms will cause alarms from AL1 and AL2. The definition of -XXX.1 ~ -XXX.4 are as below

- XXX.1, AL1 activated, AL2 released
- XXX.2, AL1 released, AL2 activated
- XXX.3, AL1 activated, AL2 activated
- XXX.4, AL1 released, AL2 release

Example 1: t- 5 = -1.1; When the program pointer arrives step 5, AL1 is activated. AL2 is released. The program jumps to step 1 to keep running.

Example 2: t- 6 = -0.3; When the program arrives step 6, AL1 and AL2 are activated. The program proceeds to the next step (Step 7).

**Note:** Only when the “run” operation is executed or jumping during the power is just on, the program will continues to jump. If the program jump to a step setting itself is a jump step as well, the program will be paused (HoLd status. The system will automatically insert HoLd between two jump step). External run/Hold operation is needed to release this HoLd status. Please be reminded if the jumping destination is the step number itself(i.e. t-6= -6), the HoLd status is not able to be released. This is a meaningless step.

#### 4.2.4 SV setting

The range of SV is limited by SPL and SPH, which is - 999~+3200 °C, indicating the temperature (°C) or linear unit to be controlled.

#### 4.2.5 Program arrangement of multi-curve operation

The AI Series program-type instruments feature a flexible and advanced programming method. For users with multiple temperature control curves, they can first use the StEP jump function to move to the starting segment and then run, to execute different curves separately. For example, if a user has three curves, each 3 segments long, the program can be arranged in segments 2~4, 5~7, and 8~10. To execute different curves upon startup, simply set the StEP parameter to the starting segment of the curve to be run before each start.

## 5 Frequently Asked Questions

### 5.1 How to Auto-Tune?

When the measured value PV is at room temperature, set the setpoint SV to approximately 60% of the commonly used temperature (for signals like pressure or flow, the commonly used setpoint value can be directly set). then press and hold  for two seconds to call out the At parameter, change the parameter value from OFF to ON and press  to confirm to enable auto-tuning. Once the At symbol stops flashing, the instrument will be ready to operate normally.

## 5.2 How to enter the internal parameter list?

Press and hold  for two seconds to enter the parameter list, then press  briefly to find the next parameter. If the full parameter is locked, find the password lock parameter LOC and set it to 808, then press  briefly to view all parameters.

## 5.3 The instrument panel is flashing “orAL”?

This indicates that the instrument has not detected an input signal. First, check whether the sensor model corresponds to the input specification parameter InP. Then, verify if the wiring to the instrument's input terminal is correct. If no issues are found, measure whether the signal from the sensor is correct, as the sensor may be damaged.

## 5.4 What to Do If the Instrument Has No Output?

First, confirm the display is normal, and the instrument is in operation (the SRUN parameter is set to RUN or HoLd). Ensure the setpoint is higher than the measured value (the OUT indicator will light up) and an alarm is configured to enable the AU1 logic output. When both the main control output and AU1 are active, the actual output terminals NOUT and LOUT will output high-voltage circuits (same as the input voltage).



Follow us on the WeChat official account for technical support



[www.yudian.com](http://www.yudian.com)

Copyright ©1994-2025

S239-05